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Recap and learning targets

• Ultimate goal: make predictions of particle decay rates and cross sections of particle scattering and 

compare the experimental results with the theoretical predictions

• Procedure: use Fermi`s golden rule: Γ!" = 2𝜋 𝑇!"
#𝜌 𝐸!

ü derive the expression for the density of final states (phase space) 𝜌 𝐸!  

x calculate the matrix elements: our next target (this semester we will focus on quantum electrodynamics)

• Today’s learning targets

• solve Dirac’s equation to find explicit forms of the wavefunctions of spin-half particles

• spin and helicity operators

• some fundamental symmetries: parity, charge conjugation, time reversal
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Dirac equation and the properties of the 𝜸 matrices
• The Dirac equation can be written more elegantly by introducing the four Dirac gamma matrices

• Using 𝜕$ =
%
%&!

= %
%'
, %
%&
, %
%(
, %
%)

	we can rewrite it as

• Properties of the 𝛼 and 𝛽 matrices:

• For the 𝛾 matrices the full set of relations is: 

• Which can be expresses as the anti-commutation rule (Clifford algebra):
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𝛾! = 𝛽, 𝛾" = 𝛽𝛼# , 𝛾$ = 𝛽𝛼%, 𝛾& = 𝛽𝛼'

𝑖𝛾(𝜕( −𝑚 Ψ = 0 (2)

(1)

𝛼# = 𝛼#
)	, 𝛼% = 𝛼%

)	, 𝛼' = 𝛼'
)	, 𝛽 = 𝛽)	

𝛾! $ = 𝐼

𝛾" $ 	= 𝛾$ $ = 𝛾& $ = −1

                    𝛾!𝛾+ + 𝛾+𝛾! = 0

 𝛾,𝛾+ + 𝛾+𝛾, = 0	(𝑘 ≠ 𝑗)

𝜸𝝁, 𝜸𝝂 =	𝜸𝝁𝜸𝝂 + 𝜸𝝂𝜸𝝁 = 𝟐𝒈𝝁𝝂



Properties of the 𝜸 matrices

• Are the 𝛾 matrices Hermitian?

• the 𝛽 matrix is Hermitian ⟹ 𝛾" is also Hermitian

• the 𝛼 matrices are Hermitian giving:

• From which follows that 𝛾" 𝑖 = 1, 2, 3  are anti-Hermitian

• In summary: 

• Which can be expresses using a four-vector notation as
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𝛾") = 𝛽𝛼# ) = 𝛼#
)𝛽) = 𝛼#𝛽 = −𝛽𝛼# = −𝛾"

𝛾!) = 𝛾!, 𝛾") = −𝛾", 𝛾$) = −𝛾$, 𝛾&) = −𝛾&

𝛾# $ = 𝛾% 𝛾# 𝛾%



Pauli-Dirac representation

• A possible numerical form of the 𝛾 −matrices:

• Which written in full are:
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𝛾% = 𝐼 0
0 −𝐼

𝛾& = 0 𝜎&
−𝜎& 0

𝛾% =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

	 , 𝛾' =

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

	 ,

𝛾( =

0 0 0 −𝑖
0 0 𝑖 0
0 𝑖 0 0
−𝑖 0 0 0

	 , 𝛾) =

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

	 ,



Four-vector current and adjoint spinor

• Using the 𝛾 matrices 𝜌 = Ψ*Ψ and 𝚥 = Ψ*𝛼⃗Ψ can be written as a four-vector current:

• The continuity equation can be written in a Lorentz-invariant form of a 4-vector scalar product:

• The expression for the four-vector current 𝑗$ = Ψ*𝛾+𝛾$Ψ can be simplified by introducing the 

adjoint spinor 6𝚿
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𝑗( = 𝜌, 𝚥 = Ψ)𝛾!𝛾(Ψ

𝜕(𝑗( = 0

<Ψ = Ψ)𝛾!



Four-vector current and adjoint spinor

• In terms of the adjoint spinor the four-vector current can be written as

• And the adjoint (covariant) Dirac equation becomes
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𝑗( = <Ψ𝛾(Ψ

𝑖𝜕( <Ψ𝛾( +𝑚<Ψ = 0 ⟹ 𝑖𝜕( <Ψ𝛾( = −𝑚<Ψ

<Ψ = Ψ)𝛾! = Ψ∗ 4𝛾! = Ψ"∗, Ψ$∗, Ψ&∗, Ψ5∗
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

	

<Ψ = Ψ"∗, Ψ$∗, −Ψ&∗, −Ψ5∗

<Ψ = Ψ)𝛾!



The Dirac equation: solution for a free particle at rest
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• For a free particle (𝑉 = 0) at rest 𝑝⃗ = 0  we obtained four solutions:

• Four solutions: two with positive energy (𝐸 > 0) and two with negative energy (𝐸 < 0)

Ψ!
(") = 𝑁

1
0
0
0

𝑒89:; , Ψ!
($) = 𝑁

0
1
0
0

𝑒89:; , with	positive	energy

Ψ!
(&) = 𝑁

0
0
1
0

𝑒<9:; , Ψ!
(5) = 𝑁

0
0
0
1

𝑒<9:; , with	negative	energy



The Dirac equation: solution for a moving particle
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• We are looking for the solutions for a free particle with four-momentum 𝑝$ = 𝐸, 𝑝⃗  in the form    

Ψ = 𝑢 𝐸, 𝑝⃗ 𝑒" -⃗⋅&⃗/0'  

• We can write the four-component spinor 𝑢 𝐸, 𝑝⃗  as 𝑢 = 1#
1$

𝛾(𝑝( −𝑚 Ψ = 0

𝛾(𝑝( −𝑚 = 𝛾!𝐸 − 𝛾⃗ ⋅ 𝑝⃗ − 𝑚	

	 = 𝐼 0
0 −𝐼 𝐸 − 0 𝜎⃗

−𝜎⃗ 0
⋅ 𝑝⃗ − 𝑚 𝐼 0

0 𝐼

	 = 𝐸 −𝑚 𝐼 −𝜎⃗ ⋅ 𝑝⃗
𝜎⃗ ⋅ 𝑝⃗ − 𝐸 +𝑚 𝐼

𝛾(𝑝( −𝑚 Ψ = 0⟹ 𝐸 −𝑚 𝐼 −𝜎⃗ ⋅ 𝑝⃗
𝜎⃗ ⋅ 𝑝⃗ − 𝐸 +𝑚 𝐼

𝑢=
𝑢>

=
0
0



The Dirac equation: solution for a moving particle
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• We get two coupled simultaneous equations for 𝑢2 and 𝑢3

• Using the explicit form of the Pauli matrices we get

• From Eq.4 and Eq. 5 we get

𝑢> =
𝜎⃗ ⋅ 𝑝⃗
𝐸 + 𝑚𝑢= =

1
𝐸 +𝑚

𝑝' 𝑝# − 𝑖𝑝%
𝑝# + 𝑖𝑝% −𝑝'

𝑢=

(3)
(4)U	 𝜎⃗ ⋅ 𝑝⃗ 𝑢> = 𝐸 −𝑚 𝑢= 

𝜎⃗ ⋅ 𝑝⃗ 𝑢= = 𝐸 +𝑚 𝑢> 

𝜎⃗ ⋅ 𝑝⃗ = 0 1
1 0 𝑝# −

0 −𝑖
𝑖 0 𝑝% +

1 0
0 −1 𝑝'

=
𝑝' 𝑝# − 𝑖𝑝%

𝑝# + 𝑖𝑝% −𝑝'

(5)



• Solutions can be obtained by making the arbitrary (but simplest) choices for 𝑢2:

• Note: for 𝑝⃗ = 0 we get the 𝐸 > 0 particle-at-rest solutions

• The choice of 𝑢2 is arbitrary but that`s not an issue because we can express any other solution choice 

as a linear combination

𝑢= =
0
1

⟹ 𝑢$ = 𝑁$

0
1

𝑝# − 𝑖𝑝%
𝐸 +𝑚
−𝑝'
𝐸 +𝑚	

(7)

𝑢= =
1
0 ⟹ 𝑢" = 𝑁"

1
0
𝑝'

𝐸 +𝑚
𝑝# + 𝑖𝑝%
𝐸 +𝑚	

(6)

The Dirac equation: solution for a moving particle
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normalisation factors



• Repeating the same procedure for 𝑢3:

• If any of these solutions is put back into the Dirac equation, we obtain 𝐸# = 𝑝⃗# +𝑚#, which doesn`t 

in itself identify the negative solutions

𝑢> =
0
1 ⟹ 𝑢5 = 𝑁5

𝑝# − 𝑖𝑝%
𝐸 −𝑚
−𝑝'
𝐸 −𝑚	
0
1

(9)

𝑢> =
1
0 ⟹ 𝑢& = 𝑁&

𝑝'
𝐸 −𝑚
𝑝# + 𝑖𝑝%
𝐸 −𝑚	
1
0

(8)

The Dirac equation: solution for a moving particle
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normalisation factors



• It’s not possible to interpret all four solutions as positive energy solutions

• if we take all solutions to have the same value of 𝐸: 𝐸 = + 𝐸  only two of the solutions are independent

• there are only four independent solutions when two are taken to have 𝐸 < 0

• To identify which solutions have 𝐸 < 0 we can refer back to particle at rest, for 𝑝⃗ = 0

• 𝑢" and 𝑢# correspond to the 𝐸 > 0 particle at rest solution

• 𝑢$ and 𝑢% correspond to the 𝐸 < 0 particle at rest solution

• So 𝑢4, 𝑢# are the positive energy solutions and 𝑢5, 𝑢6 the negative energy solutions

The Dirac equation: negative energy solutions
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• Feynman-Stücklenberg interpretation:

• Approach 1: negative energy solution interpreted as a negative energy particle propagating backwards in time

• the time dependence of the wavefunction becomes: 𝑒&'() = 𝑒&'(&()(&))

• Approach 2: alternatively, it can be interpreted as a positive energy antiparticle propagating forward in time

• Following this interpretation we will work with antiparticle wavefunctions with 𝐸 = 𝑝⃗ # +𝑚#

The Dirac equation: antiparticles
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• Approach 1: start from the negative energy solutions

• “Define” antiparticle wavefunction by flipping the sign of 𝐸 and 𝑝⃗ and with 𝐸 now being positive 

𝐸 = 𝑝⃗ # +𝑚#

𝑢& = 𝑁&

𝑝'
𝐸 −𝑚
𝑝# + 𝑖𝑝%
𝐸 −𝑚	
1
0

, 	 𝑢5 = 𝑁5

𝑝# − 𝑖𝑝%
𝐸 −𝑚
−𝑝'
𝐸 −𝑚	
0
1

The Dirac equation: Approach 1
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𝑣" 𝐸, 𝑝⃗ 𝑒89 @⃗⋅#⃗8B; = 𝑢5 −𝐸,−𝑝⃗ 𝑒9 @⃗⋅#⃗8B;

𝑣$(𝐸, 𝑝⃗)𝑒89 @⃗⋅#⃗8B; = 𝑢&(−𝐸,−𝑝⃗)𝑒9 @⃗⋅#⃗8B;



• Approach 2: find negative energy plane-wave solutions to the Dirac equation of the form              

Ψ = 𝑣 𝐸, 𝑝⃗ 𝑒/𝒊 -⃗⋅&⃗/0' , where 𝐸 = 𝑝⃗ # +𝑚# 

• Although 𝐸 > 0 these are still negative energy solutions: E𝐻Ψ = 𝑖𝜕'Ψ = −𝐸Ψ

• Putting Ψ in the Dirac equation: 𝑖𝛾$𝜕$ −𝑚 Ψ = 0 we get

The Dirac equation: Approach 2
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−𝛾!𝐸 + 𝛾"𝑝# + 𝛾$𝑝% + 𝛾&𝑝' −𝑚 𝑣 = 0

⟹ 𝛾(𝑝( +𝑚 𝑣 = 0

Dirac equation in terms of momentum for antiparticles

Reminder: 𝛾$𝑝$ −𝑚 𝑢 = 0 was the solution for particles



The Dirac equation: Approach 2
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• We again get two coupled simultaneous equations this time for 𝑣2 and 𝑣3

(10)
(11)U	 𝜎⃗ ⋅ 𝑝⃗ 𝑣= = 𝐸 −𝑚 𝑣> 

𝜎⃗ ⋅ 𝑝⃗ 𝑣> = 𝐸 +𝑚 𝑣= 

𝑢5 = 𝑁5

𝑝# − 𝑖𝑝%
𝐸 −𝑚
−𝑝'
𝐸 −𝑚	
0
1

, 	 𝑢& = 𝑁&

𝑝'
𝐸 −𝑚
𝑝# + 𝑖𝑝%
𝐸 −𝑚	
1
0

𝑣" = 𝑁"C

𝑝# − 𝑖𝑝%
𝐸 +𝑚
−𝑝'
𝐸 +𝑚	
0
1

, 𝑣$ = 𝑁$C

𝑝'
𝐸 +𝑚
𝑝# + 𝑖𝑝%
𝐸 +𝑚	
1
0

antiparticles 𝐸 > 0

particles 𝐸 < 0

𝑢6 −𝐸,−𝑝⃗ = 𝑣4 𝐸, 𝑝⃗
𝑢5 −𝐸,−𝑝⃗ = 𝑣#(𝐸, 𝑝⃗)



𝑢" = 𝑁"

1
0
𝑝'

𝐸 +𝑚
𝑝# + 𝑖𝑝%
𝐸 +𝑚	

, 𝑢$ = 𝑁$

0
1

𝑝# − 𝑖𝑝%
𝐸 +𝑚
−𝑝'
𝐸 +𝑚	

, 𝑢& = 𝑁&

𝑝'
𝐸 −𝑚
𝑝# + 𝑖𝑝%
𝐸 −𝑚	
1
0

, 𝑢5 = 𝑁5

𝑝# − 𝑖𝑝%
𝐸 −𝑚
−𝑝'
𝐸 −𝑚	
0
1

𝑣" = 𝑁"C

𝑝# − 𝑖𝑝%
𝐸 +𝑚
−𝑝'
𝐸 +𝑚	
0
1

, 𝑣$ = 𝑁$C

𝑝'
𝐸 +𝑚
𝑝# + 𝑖𝑝%
𝐸 +𝑚	
1
0

, 𝑣& = 𝑁&C
1
0
𝑝'

𝐸 −𝑚
𝑝# + 𝑖𝑝%
𝐸 −𝑚	

, 𝑣5 = 𝑁5C
0
1

𝑝# − 𝑖𝑝%
𝐸 −𝑚
−𝑝D
𝐸 −𝑚	

The Dirac equation: particle and antiparticle spinors
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• Four solution for “particles” of the form Ψ8 = 𝑢" 𝐸, 𝑝⃗ 𝑒𝒊 -⃗⋅&⃗/0'

• Four solution for “antiparticles” of the form Ψ" = 𝑣" 𝐸, 𝑝⃗ 𝑒/𝒊 -⃗⋅&⃗/0'
𝐸 = 𝑝⃗ # +𝑚# 

𝐸 = 𝑝⃗ # +𝑚# 𝐸 = − 𝑝⃗ # +𝑚# 

𝐸 = − 𝑝⃗ # +𝑚# 

𝑢6 −𝐸,−𝑝⃗ = 𝑣4 𝐸, 𝑝⃗
𝑢5 −𝐸,−𝑝⃗ = 𝑣#(𝐸, 𝑝⃗)

𝑢4 −𝐸,−𝑝⃗ = 𝑣5 𝐸, 𝑝⃗
𝑢# −𝐸,−𝑝⃗ = 𝑣6(𝐸, 𝑝⃗)



𝑢" = 𝑁"

1
0
𝑝'

𝐸 +𝑚
𝑝# + 𝑖𝑝%
𝐸 +𝑚	

, 𝑢$ = 𝑁$

0
1

𝑝# − 𝑖𝑝%
𝐸 +𝑚
−𝑝'
𝐸 +𝑚	

, 𝑣" = 𝑁"C

𝑝# − 𝑖𝑝%
𝐸 +𝑚
−𝑝'
𝐸 +𝑚	
0
1

, 𝑣$ = 𝑁$C

𝑝'
𝐸 +𝑚
𝑝# + 𝑖𝑝%
𝐸 +𝑚	
1
0

The Dirac equation: particle and antiparticle spinors

19

• We have a four-component spinor ⟹ only four are linearly independent

• a natural choice is to use positive energy solutions: 𝑢", 𝑢#, 𝑣", 𝑣#

𝐸 = 𝑝⃗ # +𝑚# 𝐸 = 𝑝⃗ # +𝑚# 

particles antiparticles



Normalisation and orthogonality
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• The convention is to normalise the wavefunctions to 2 𝐸  particles per unit volume

• For Ψ = 𝑢4𝑒"(-⃗⋅&⃗/0') the probability density is 𝜌 = Ψ*Ψ = 𝑢4
*𝑢4

* = 𝑁4 # #0
0;<

• We are using only 𝐸 > 0 solutions so we get for 𝑢4, 𝑢#, 𝑣4, 𝑣# :

• The spinors are orthogonal

𝑁" = 𝑁$ = 𝑁"C = 𝑁$C = 𝑁 = 𝐸 +𝑚	

𝑢+
$𝑢, = 0	for	𝑗 ≠ 𝑘

𝑢8
$𝑢& = 2 𝐸 𝛿8&	with	𝑗, 𝑘 = 1, 2, 3, 4



Short recap
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• We solved the covariant Dirac equation for a free particle both at rest and in motion

• We found four solutions for particles with 4-momentum 𝑝$ = (𝐸, 𝑝⃗): Ψ" = 𝑢" 𝐸, 𝑝⃗ 𝑒;"(-⃗⋅&⃗/0')

• two solutions with 𝐸 > 0 and two with 𝐸 < 0

• We used the Feynman-Stücklenberg interpretation to interpret the negative solutions as positive 

energy antiparticles propagating forward in time: Ψ" = 𝑣" 𝐸, 𝑝⃗ 𝑒/"(-⃗⋅&⃗/0')

• two solutions with 𝐸 > 0 and two with 𝐸 < 0

• 8 solution in total, only 4 independent: we chose to work with the 𝐸 > 0 solutions 𝑢4, 𝑢#, 𝑣4, 𝑣#

• We normalised the solutions to 2 𝐸  particles per unit volume giving

• Orthogonal solutions: 𝑢=
*𝑢> = 2 𝐸 𝛿=>	with	𝑗, 𝑘 = 1, 2, 3, 4

𝑖𝛾(𝜕( −𝑚 Ψ = 0

𝑣4 𝐸, 𝑝⃗ = 𝑢6 −𝐸,−𝑝⃗
𝑣# 𝐸, 𝑝⃗ = 𝑢5 −𝐸,−𝑝⃗



What about spin?
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• Consider the orbital angular momentum operator 𝐿 = 𝑥⃗×𝑝⃗ = −𝑖𝑥⃗×∇: does it commute with ℋ??

• The orbital angular momentum is NOT a conserved quantity of the quantum system

• Define the 4×4 operator Σ as an extension of the Pauli spin operator:

• Compute the commutator of Σ with ℋ?

𝐿,ℋ? = 𝑥⃗×𝑝⃗, 𝛼⃗ ⋅ 𝑝⃗ + 𝛽𝑚 = 𝑖𝛼⃗×𝑝⃗ ≠ 0 ⟹ angular momentum does not commute with ℋ@

Σ4 =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

	 , Σ# =

0 −𝑖 0 0
𝑖 0 0 0
0 0 0 −𝑖
0 0 𝑖 0

	 , Σ5 =

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

	

Σ	operator: Σ = Σ", Σ$, Σ& ≡ 𝜎 0
0 𝜎

Σ,ℋ? = Σ, 𝛼⃗ ⋅ 𝑝⃗ + 𝛽𝑚 = −2𝑖 𝛼⃗×𝑝⃗ ≠ 0 ⟹ spin also does not commute with ℋ@



Spin of a Dirac particle
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• We can define the total angular momentum operator 𝑱⃗

• The quantity is conserved since its operator commutes with ℋ?

𝐿,ℋE = 𝑖𝛼⃗×𝑝⃗ and Σ,ℋE = −2𝑖 𝛼⃗×𝑝⃗  

𝐽 ≡ 𝐿 +
1
2
Σ = 𝐿 + 𝑆

𝐽,ℋ9 = 𝐿 + 𝑆,ℋ9 = 0



Spin of a Dirac particle
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• The Dirac equation describes a relativistic particles with spin-𝟏/𝟐

• The 4×4 matrix spin operator 𝑆 is 

• The components of 𝑆 have the same commutation relations as the Pauli matrices and of orbital 

angular momentum

• The spin magnitude of the Dirac particle is given by 𝑆#Ψ = s s + 1 Ψ where

𝑆:, 𝑆8 = 2𝑖𝜖:8&𝑆&

𝑆 = 𝑆", 𝑆$, 𝑆& =
1
2 𝛴⃗ =

1
2
𝜎 0
0 𝜎

𝑆$ =
1
4
(Σ"$ + Σ$$ + Σ&$) =

3
4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

	



Spin of a Dirac particle: particle at rest
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• Let`s consider the spinors for particles at rest Ψ+"(𝑖 = 1, 2, 3, 4)

• They are eigenstates of the diagonal operator 𝑆5:

• Corresponding to spin-up | ⟩↑  and spin-down | ⟩↑  eigenstates

𝑆& =
1
2Σ& =

1
2
𝜎& 0
0 𝜎&

=
1
2

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

	

Ψ!
(") = 𝑁

1
0
0
0

𝑒89:; , Ψ!
($) = 𝑁

0
1
0
0

𝑒89:; , with	positive	energy

Ψ!
(&) = 𝑁

0
0
1
0

𝑒<9:; , Ψ!
(5) = 𝑁

0
0
0
1

𝑒<9:; , with	negative	energy



Spin of a Dirac particle: moving particle
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• Particle traveling along the 𝑧 −direction, 𝑝 = 0,0, ±𝑝

• The solutions are given by 

• Ψ(",#) = 𝑢-
(",#)𝑒&'./ for positive energy

• Ψ($,%) = 𝑢-
($,%)𝑒0'./ for negative energy

𝑢'" = 𝑁
1
0
±𝑝

𝐸 +𝑚	
0

, 𝑢'$ = 𝑁
0
1
0
∓𝑝

𝐸 +𝑚	

, 𝑢'& = 𝑁

±𝑝
𝐸 −𝑚	
0
1
0

, 𝑢'5 = 𝑁
0
∓𝑝

𝐸 −𝑚	
0
1



Spin of a Dirac particle: moving particle
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• Particle traveling along the 𝑧 −direction, 𝑝 = 0,0, ±𝑝

𝑆&Ψ(") = +
1
2Ψ

"

𝑆&Ψ($) = −
1
2
Ψ $

𝑆&Ψ(&) = +
1
2Ψ

&

𝑆&Ψ(5) = −
1
2Ψ

5

• Spinors Ψ 4  and Ψ 5  represent spin-up

• Spinors Ψ #  and Ψ 6  represent spin-down
valid only for particles travelling along the 𝑧 −direction



Spin states

28

• In general, the spinors 𝑢4, 𝑢#, 𝑣4, 𝑣#  are not eigenstates of 𝑆5

• Only valid for particles and antiparticles traveling along the 𝑧 −direction

• Can be represented as graphically for 0,0, 𝑝  and 0,0, −𝑝

• More generally: we want to label our states in terms of “good quantum numbers”, i.e a set of 

observables commuting with ℋ?, not only for particles that travel along the 𝑧 −axis 

• 𝑧 −component of the spin would not work as ℋ?, 𝑆5 ≠ 0

• We must then introduce a new concept: “helicity”



Helicity of a Dirac particle
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• The helicity operator represents the normalised projection of the spin along the direction of motion 

of the particle

• The helicity operator commutes with ℋ? for a free particle ⟹ it is possible to define spinors that are 

simultaneous eigenstates of ℋ? and the helicity operator!

• Note that ℎ# = 4
-%

𝜎⃗ ⋅ 𝑝⃗ #	 0
0 𝜎⃗ ⋅ 𝑝⃗ # = 4

-%
𝑝#𝐼	 0
0 𝑝#𝐼

= 𝐼

• ⟹ ℎ = ±1 and for a spin-1/2 particle the spin is quantized to be either “up” or “down”

• Helicity is a good quantum number with eigenvalues +1 and −1!

ℎ ≡
𝑆 ⋅ 𝑝⃗
𝑆 𝑝⃗

=
2𝑆 ⋅ 𝑝⃗
𝑝⃗ =

Σ ⋅ 𝑝⃗
𝑝⃗

Σ ⋅ 𝑝⃗,ℋE = Σ ⋅ 𝑝⃗, 𝛼⃗ ⋅ 𝑝⃗ + 𝛽𝑚 = Σ ⋅ 𝑝⃗, 𝛼⃗ ⋅ 𝑝⃗ = 0, since Σ, 𝛼⃗ = 0



Helicity of a Dirac particle
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• These states are called positive or right-handed and negative or left-handed helicity states

• ℎ defines the component of a particle`s spin along its direction of motion

• If we make a measurement of the component of spin of a spin-1/2 particle along any axis it can take 

two values: ±1/2

• The eigenvalues of the helicity operator for a spin-1/2 particle are ℎ = ±1



Helicity of a Dirac particle
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• Note that even though it is a conserved quantity for a free Dirac quantity, helicity is not a Lorentz-

invariant quantity

• For any massive particle: 𝑣 < 𝑐

• There exists a boosted inertial frame where the particle momentum appears reversed (not true for a 

massless particle travelling at the speed of light e.g. neutrinos)

• Relative to the boosted observer, the helicity of the particle will appear reversed

• The helicity is not invariant under Lorentz transformations (except for massless particles)



Helicity eigenstates
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• See the complementary notes attached on moodle for a derivation of the helicity eigenstates

• Equivalent solutions and definition of right-handed and left-handed for antiparticles



Parity and time reversal
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• Two discrete symmetries part of the Lorentz group

• Find a representation 𝑆 𝑃  and 𝑆 𝑇  of them on a Dirac spinor so that:

• Like rotations and boosts, the discrete transformations 𝑃 and 𝑇 should be representable by a 4×4 

matrix, e.g. by the 𝛾 matrices

Parity P:	 𝑥! → 𝑥!; 𝑥9 → −𝑥9

Time reversal T:	 𝑥! → −𝑥!; 𝑥9 → 𝑥9(𝑖 = 1, 2, 3)

Ψ 𝑡, 𝑥⃗ → 𝑆 𝑃 Ψ 𝑡,−𝑥⃗ 	and	Ψ 𝑡, 𝑥⃗ → 𝑆 𝑇 Ψ −𝑡, 𝑥⃗



Parity reversal operator 𝑷
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• The operator 𝑃 reverses the direction of the momentum 𝑝⃗ of a particle but it retains its spin

• The parity operator should satisfy: 𝑃/4 = 𝑃 and 𝑃# = 𝐼

• For simple handling of spin states, consider a particle moving along the 𝑧 −direction (slide 26)

• The parity should not mix spin-up and spin-down configurations as well as positive and negative 

energy eigenstates

• The parity matches 𝑢)
" 𝐸, 𝑝⃗ ⟷ 𝑢)

" 𝐸,−𝑝⃗

𝑆 𝑃 𝑢)
4 𝐸,−𝑝 = 𝑁

1 0 0 0
0 ? 0 0
0 0 −1 0
0 0 0 ?

1
0
−𝑝

𝐸 +𝑚
0

= 𝑁

1
0
𝑝

𝐸 +𝑚
0

= 𝑢)
4 𝐸, 𝑝

𝑆 𝑃 𝑢)
# 𝐸,−𝑝 = 𝑁

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

0
1
0
−𝑝

𝐸 +𝑚

= 𝑁

0
1
0
𝑝

𝐸 +𝑚

= 𝑢)
# 𝐸, 𝑝

𝑝⃗ = 0,0, 𝑝



Parity reversal operator 𝑷
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• The representation of the parity operator is 𝛾+

• The spinor representation of the parity operation is

• 𝜂1 is an overall unobservable phase

• For a particle/antiparticle at rest the solutions to the Dirac equations are 

𝑆 𝑃 𝑢4 = ±

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

	 =

1
0
0
0

= ±𝑢4

P:Ψ → 𝑆 𝑃 Ψ = 𝜂F𝛾!Ψ

𝑢4 = 𝑁
1
0
0
0

, 𝑢# = 𝑁
0
1
0
0

, 𝑣4 = 𝑁
0
0
0
1

, 𝑣# = 𝑁
0
0
1
0

Ψ = 𝑢"𝑒89:;; Ψ = 𝑢$𝑒89:;; Ψ = 𝑣"𝑒<9:;; Ψ = 𝑣$𝑒<9:;



Parity reversal operator 𝑷
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• For all four spinors we get

• Hence the anti-particle at rest has opposite intrinsic parity to a particle at rest

• Convention: particles are chosen to have positive parity, which is equivalent to choosing

𝑆 𝑃 = +𝛾!

𝑆 𝑃 𝑢" = ±𝑢"; 	 𝑆 𝑃 𝑣" = ∓𝑣";

𝑆 𝑃 𝑢$ = ±𝑢$; 	 𝑆 𝑃 𝑣$ = ∓𝑣$;



What are scalar, vector, etc. particles
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• The names come from how objects transform under parity reversal:

• scalar is a constant: 𝑃 𝑠 = 𝑠

• pseudoscalar flips the sign: 𝑃 𝑝 = −𝑝

• vector flips the sign: 𝑃 𝑣⃗ = −𝑣⃗

• pseudovector or axial vector is unchanged: 𝑃 𝑎⃗ = 𝑎⃗

• The same names are used for particles according to how they transform under parity

• scalar: spin-0 particle with a positive parity 00, e.g. 𝑓2 mesons (PDG)

• pseudoscalar: spin-0 particle with a negative parity 0&, e.g. pions 𝜋±, 𝜋2

• vector: spin-1 particle with a negative parity 1&, e.g. 𝜌, 𝜔, 𝛾, gluon 

• pseudovector or axial vector: spin-1 particle with a positive parity 10, e.g. 𝑓" mesons



Charge conjugation operator 𝑪
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• The operation that replaces each particle with its antiparticle and vice-versa keeping the spin 

unchanged is performed by the charge conjugation operator 𝑪

• The charge conjugated spinor ΨA is defined as

• In analogy with the Schrödinger equation, the Dirac equation for a particle of charge 𝑒 in an external 

electromagnetic field is:

• For the charge conjugated particle (of charge −𝑒) it should be

• ΨA should satisfy the above equation

𝑖𝛾((𝜕( − 𝑒𝐴() − 𝑚 Ψ = 0

𝑖𝛾((𝜕( + 𝑒𝐴() − 𝑚 Ψ = 0

Charge conjugation 𝐶: 	 Ψ → ΨA = 𝐶Ψ∗

(12)

(13)



Charge conjugation operator 𝑪
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• Taking complex conjugate of (12) and multiplying by 𝐶 we get

• For Eq.13 to work we need 

• In our representations, only 𝛾# is imaginary: 𝐶 = 𝑖𝛾# works

• 𝜂4  is an unobservable global phase

𝐶 −𝑖 𝛾( ∗(𝜕( − 𝑒𝐴() − 𝑚 𝐶8"𝐶Ψ =
= −𝑖𝐶 𝛾( ∗𝐶8"(𝜕( − 𝑒𝐴() − 𝑚 ΨG = 0

𝐶 𝛾( ∗𝐶8" = −𝛾(

Charge conjugation 𝐶: 	 Ψ → ΨA = 𝑖𝜂A𝛾#Ψ∗



Charge conjugation operator 𝑪
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• We verify directly the effect of the charge conjugation on our specific particle and antiparticle solutions 

using the spinors 𝑢 !  and 𝑣 !  of the Dirac equation

• The effect of the charge conjugation operator on the antiparticle spinors 𝑣 "  and 𝑣 #  is to transform them 

into 𝑢 "  and 𝑢 #  (up to an unobservable complex phase)

𝐶𝑣 4 𝐸, 𝑝⃗ = 𝑖𝛾#𝑣 4 ∗ = 𝑖

0 0 0 −𝑖
0 0 𝑖 0
0 𝑖 0 0
−𝑖 0 0 0

	 𝑁

𝑝& + 𝑖𝑝(
𝐸 +𝑚
−𝑝)
𝐸 +𝑚
0
1

= 𝑁

1
0
𝑝)

𝐸 +𝑚
𝑝& + 𝑖𝑝(
𝐸 +𝑚

= 𝑢 4 (𝐸, 𝑝⃗)

𝐶𝑣 # 𝐸, 𝑝⃗ = 𝑖𝛾#𝑣 # ∗ = 𝑖

0 0 0 −𝑖
0 0 𝑖 0
0 𝑖 0 0
−𝑖 0 0 0

	 𝑁

𝑝)
𝐸 +𝑚
𝑝& − 𝑖𝑝(
𝐸 +𝑚
1
0

= −𝑁

0
1

𝑝& − 𝑖𝑝(
𝐸 +𝑚
−𝑝)
𝐸 +𝑚

= −𝑢 # (𝐸, 𝑝⃗)



Time reversal operator 𝑻
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• Time reversal operator flips the momentum 𝑝⃗ and the spin

• Like previously, we look for an operator 𝑇 such that

• The operator must be antiunitary satisfy 𝑇/4 = −𝑇 and 𝑇# = −𝐼

• Consider the product 𝛾4𝛾5 (and use 𝜎4𝜎5 = 𝑖𝜖4#5𝜎# = −𝑖𝜎#):

• where 𝜂5 is an overall unobservable phase

Time reversal T: 	Ψ 𝑡, 𝑥⃗ → 𝑆 𝑇 Ψ −𝑡, 𝑥⃗

𝑆 𝑇 = 𝜂C𝛾4𝛾5 = 𝜂C
0	 𝜎4
−𝜎4 0

0	 𝜎5
−𝜎5 0 = 𝜂C

−𝜎4𝜎5	 0
0 𝜎4𝜎5

= 𝑖𝜂C
𝜎#	 0
0 𝜎#



Time reversal operator 𝑻
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• Again, a particle moving along the 𝑧 −direction

• ⟹ the time reversal transformation changes spin and can be expressed as

𝑆 𝑇 𝑢)
4 𝐸, 𝑝 = 𝑖𝜂C𝑁

0 −𝑖 0 0
𝑖 0 0 0
0 0 0 −𝑖
0 0 𝑖 0

1
0
𝑝

𝐸 +𝑚
0

= −𝜂C𝑁

0
1
0
𝑝

𝐸 +𝑚

= −𝜂C𝑢)
# 𝐸, 𝑝

𝑆 𝑇 𝑢)
# 𝐸, 𝑝 = 𝑖𝜂C𝑁

0 −𝑖 0 0
𝑖 0 0 0
0 0 0 −𝑖
0 0 𝑖 0

0
1
0
𝑝

𝐸 +𝑚

= 𝜂C𝑁

1
0
𝑝

𝐸 +𝑚
0

= 𝜂C𝑢)
4 𝐸, 𝑝

Time reversal T ∶ 	 Ψ → 𝑆 𝑇 Ψ = 𝜂4𝛾"𝛾&Ψ



Summary
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• We formulated a relativistic quantum mechanics starting from the linear Dirac equation

• new degrees of freedom: found to describe spin-1/2 particles

• We introduced the 4-vector current and adjoint spinor:

• With the Dirac equation we can`t escape from having two 𝐸 > 0 and two 𝐸 < 0 solutions

• We used the Feynman-Stücklenberg interpretation

• 𝐸 > 0 solutions: positive energy particles propagating forward in time: Ψ& = 𝑢& 𝐸, 𝑝⃗ 𝑒'&(*⃗⋅,⃗-./)

• 𝐸 < 0 solutions: positive energy antiparticles propagating forward in time: Ψ& = 𝑣& 𝐸, 𝑝⃗ 𝑒-&(*⃗⋅,⃗-./)

• 8 solution in total, only 4 independent: we chose to work with the 𝐸 > 0 solutions 𝑢4, 𝑢#, 𝑣4, 𝑣#

•  Orthogonal solutions: 𝑢=
*𝑢> = 2 𝐸 𝛿=>	with	𝑗, 𝑘 = 1, 2, 3, 4

ℋEΨ = 𝛼⃗ ⋅ 𝑝⃗ + 𝛽𝑚 Ψ = 𝑖
𝜕Ψ
𝜕𝑡 ⟹ 𝑖𝛾(𝜕( −𝑚 Ψ = 0

𝑗( = Ψ)𝛾!𝛾(Ψ = <Ψ𝛾(Ψ



Summary
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• The most useful basis: particle and antiparticle helicity eigenstates 𝑢4, 𝑢#, 𝑣4, 𝑣#

• In terms of the 4-component spinors, the charge conjugation, parity and time reversal operations are:

Charge conjugation 𝐶 ∶ 	 Ψ → ΨS = 𝑖𝜂S𝛾$Ψ∗

         Parity reversal 𝑃 ∶ 	 Ψ → 𝑆 𝑃 Ψ = 𝜂F𝛾!Ψ

           Time reversal T ∶ 	 Ψ → 𝑆 𝑇 Ψ = 𝜂4𝛾"𝛾&Ψ



Summary of Lecture 7

Main learning outcomes

• Dirac equation

• 4-vector current and adjoint spinors

• solutions in terms of particle spinors representing spin-1/2 particles

• choosing the appropriate basis of spinors 

• Spin and helicity operators

• Charge, Parity and Time reversal operators acting on spinors
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