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Recap and learning targets

« Ultimate goal: make predictions of particle decay rates and cross sections of particle scattering and

compare the experimental results with the theoretical predictions

* Procedure: use Fermi's golden rule: [; = 2n|Tfl-|2p(Ef)

v derive the expression for the density of final states (phase space) p(Ey)

x calculate the matrix elements: our next target (this semester we will focus on quantum electrodynamics)

* Today’s learning targets
* solve Dirac’s equation to find explicit forms of the wavefunctions of spin-half particles
* spin and helicity operators

« some fundamental symmetries: parity, charge conjugation, time reversal



Dirac equation and the properties of the y matrices

The Dirac equation can be written more elegantly by introducing the four Dirac gamma matrices

0 — 1 — 2 — 3 _
14 _ﬁ' 4 —,BC(x, )4 _ﬁay’ 4 —,BCZZ (1)
: 0 o 09 9 0 cp
Using 9, = Fywie (5’&’@’&) we can rewrite 1t as

(i)/“au — m)‘{’ =0 (2)

Properties of the a and f matrices: «, = a;: Ay = a; , Ay = C(; B =BT

For the y matrices the full set of relations is:

)2 =1
) =) =0%)=-1
yoy/ +yly® =0
vy +ylyR =0 (k # )
* Which can be expresses as the anti-commutation rule (Clifford algebra):

why' = ytyY +yVy# = 2g*



Properties of the y matrices

Are the y matrices Hermitian?

* the f matrix is Hermitian = y? is also Hermitian

* the a matrices are Hermitian giving;:

le = (lgax)1L — a;lc-IBT =ayf = —fay = _Vl

From which follows that y'(i = 1, 2, 3) are anti-Hermitian

* In summary:

yOt = 90 1t = 1 2f = 2 3t = 3

Which can be expresses using a four-vector notation as

(yM)T =y0yHy0



Pauli-Dirac representation

A possible numerical form of the y —matrices:
0 _ (I 0 )
"o -1

 Which written in full are:
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Four-vector current and adjoint spinor
» Using the y matrices p = YTW and j = WT@W can be written as a four-vector current:
j#=(p.J) =WTyoyr¥
 The continuity equation can be written in a Lorentz-invariant form of a 4-vector scalar product:
d,j* =0

« The expression for the four-vector current j* = YTy %#W¥ can be simplified by introducing the

adjoint spinor ¥



Four-vector current and adjoint spinor

P = yTyo
U Lo o
_ . cwrwrwn] 0 10
l-IJ — LIJ'I')/O = (LIJ )T]/O = (1111,1-1-’2’1-1-’3,‘{)4) O O _1
0O 0 O

VY= (¥Y,¥,,—¥;,-¥,)
* In terms of the adjoint spinor the four-vector current can be written as

* And the adjoint (covariant) Dirac equation becomes

(i0,Py* + m¥P) = 0 = i9,Py* = - m¥



The Dirac equation: solution for a free particle at rest

* For a free particle (V = 0) at rest (p = 0) we obtained four solutions:

0
1 | e~ with positive energy
0
0

g® — N [0)etimt g — N[0 )etimt with negative ener

0 0 8 gy
1 0
0 1

 Four solutions: two with positive energy (E > 0) and two with negative energy (E < 0)



The Dirac equation: solution for a moving particle

(y“pu — m)W =0
« We are looking for the solutions for a free particle with four-momentum p* = (E, p) in the form

Y = u(E, ple' ¥
ytp,—m=y’E—-y-p—-m

=G S-G9 -m( D)

=((E:711)1 —0-p )

g-p —(E +m)I

° 1 - : - — [Ua
We can write the four-component spinor u(E,p) as u = ( uB)

(Vo —m)¥=0= ((EO:. 7;31)1 _(;i fz)l) (ZZ) - (8)



The Dirac equation: solution for a moving particle

* We get two coupled simultaneous equations for u, and ug

(6 -pug = (E —muy (3)
(6 -Pua = (E + m)ug (4)

» Using the explicit form of the Pauli matrices we get
(5)

( 12 Px — ipy)
Px T ipy —Pz

* From Eq.4 and Eq. 5 we get




The Dirac equation: solution for a moving particle

* Solutions can be obtained by making the arbitrary (but simplest) choices for uy,:

1
, 0o )
wm()muon( &
/’ E+m
o Px + ipy /
normalisation factors E+m
0
()=
Ua = \4 Y2 ="Ml p, —ip, (7)
E+m
—Dz
E+m

* Note: for p = 0 we get the E > 0 particle-at-rest solutions

* The choice of uy is arbitrary but that's not an issue because we can express any other solution choice

as a linear combination



The Dirac equation: solution for a moving particle

* Repeating the same procedure for ug:

Pz
1 E—m
Ug = (O) = U3z = N3 | Px + lpy (8)
E—m
normalisation factors (1)
Px — ipy
0 E—m 9)
B (1) Ua = M)
0
1

« If any of these solutions is put back into the Dirac equation, we obtain E? = p* + m?, which doesn't

in itself identify the negative solutions



The Dirac equation: negative energy solutions

* It's not possible to interpret all four solutions as positive energy solutions
* if we take all solutions to have the same value of E: E = +|E| only two of the solutions are independent

* there are only four independent solutions when two are taken to have E < 0

» To identify which solutions have E < 0 we can refer back to particle at rest, for p = 0
* uy and u, correspond to the E > 0 particle at rest solution

* uz and u, correspond to the E' < 0 particle at rest solution

* So uq,u, are the positive energy solutions and us, u, the negative energy solutions



The Dirac equation: antiparticles

* Feynman-Stiicklenberg interpretation:
* Approach 1: negative energy solution interpreted as a negative energy particle propagating backwards in time
—iEt _ p=i(-E)(-t)

* the time dependence of the wavefunction becomes: e

« Approach 2: alternatively, it can be interpreted as a positive energy antiparticle propagating forward in time

« Following this interpretation we will work with antiparticle wavefunctions with E = \/|p|2 + m?2
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The Dirac equation: Approach 1

* Approach 1: start from the negative energy solutions

Pz px_ipy
E—m E—m
Uz = N3 px+ipy ) Uy = Ny TPz
E—-m E-—m
\ ! !
0 1

 “Define” antiparticle wavefunction by flipping the sign of E and p and with E now being positive

E = Ipl* + m?

%] (E, ﬁ)e_i(ﬁ'f_Et) — u4(_E, _ﬁ)ei(ﬁ'f—Et)

v, (E, B)e tWI-Et) = . (—F, —p)e!@*-E)



The Dirac equation: Approach 2

* Approach 2: find negative energy plane-wave solutions to the Dirac equation of the form

Y = p(E,p)e P*E) where E = \/|p|? + m?
e Although E > 0 these are still negative energy solutions: H¥Y = i9,¥ = —E¥

* Putting ¥ in the Dirac equation: (i]/“aﬂ —m)¥ = 0 we get

(—v°E +y'py +v%py, +¥3p, —m)v =0

= (y“pu + m)v =0
Dirac equation in terms of momentum for antiparticles

Reminder: (y“pu — m)u = (0 was the solution for particles

16



The Dirac equation: Approach 2

* We again get two coupled simultaneous equations this time for v, and vg

{ @ P)va = (E — m)vg

(10)
(- pvg = (E+m)y, (11)
Px — ipy\ Pz
E+m /E+m
antiparticles E > 0 v, =N;{| _—Pz_ |, Uy, = Nz' Dx T LDy
E+m E+m

0 1
us(—E,—p) = v1(E,p) \ 1 / \ /

uz(—E, —ﬁ) = v, (E, ﬁ)

Px — lpy Pz
E —m E—m
particles E < 0 Uy = N, — Pz , u; = N3 | Px 1Dy
E—m EF—m
0 1
1



The Dirac equation: particle and antiparticle spinors

» Four solution for “particles” of the form W; = u;(E, p)e P*~Et)
Pz Px — ipy
0 D) F—m E—m
u, = N D, ,U, = N, Dy — Dy ,Us = N3 | Px TPy |, uy = Ny E—pz
Dx + 1Dy —p, / 1 X
E+m E+m 0
uy (—E, —p) = v3(E,p) — _
uy(—E,—p) = vy(E,p)  E=VIBP+m E = 1P +m?
* Four solution for “antiparticles” of the form ¥; = v;(E, ﬁ)e‘i(ﬁ"?‘Et)
Px — ipy D 1 0
E+m E+m 0 \ " \
m
0 bam E—m E—m
1 \ Px t 1Py / Pz /
0 E—m E—m

U4(_E, _ﬁ) — vl(E) ﬁ)
5 R — (1712 2 — _ 1712 2
us(—E,—p) = v,(E,p) E=IpI?+m E JIBIZ +m 18



The Dirac equation: particle and antiparticle spinors

* We have a four-component spinor = only four are linearly independent

e a natural choice is to use positive energy solutions: {u,, u,, v, v
1, U2, V1, Uy

particles antiparticles
1 0 Px — Dy Pz
0 / 1 E+m E+m
U = N1 D, y Uy = NZ Dy — lpy ) V1 = Nll E'_i y Uy = NZI Px + lpy
Px + lpy \ —DP 1 1
E+m E+m 0

E = I + m? E = B +m?
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Normalisation and orthogonality

* The convention is to normalise the wavefunctions to 2|E| particles per unit volume

2 2E

o For ¥ = u e!®@*-ED the probability density is p = $TW¥ = uiruir = |N; -

We are using only E > 0 solutions so we get for {uq, u,, v4, v, }:

The spinors are orthogonal

u]Tuk =0forj#k

ulw, = 2|E|8) with j,k =1,2,3,4

20



Short recap

We solved the covariant Dirac equation for a free particle both at rest and in motion

iytd, —m)¥ =0
(iv#0, —m)

+i(p-X—Et)

We found four solutions for particles with 4-momentum p* = (E,p): ¥; = w;(E,p)e

 two solutions with E > 0 and two with E < 0

We used the Feynman-Stiicklenberg interpretation to interpret the negative solutions as positive
energy antiparticles propagating forward in time: ¥; = v;(E, B)e i@ X-Et)

 two solutions with E > 0 and two with E < 0

8 solution in total, only 4 independent: we chose to work with the E > 0 solutions {u4, uy, v, v5}

Ul(E, ﬁ) — U,4(—E, _ﬁ)
v,(E,p) = u3(—E,—p)

We normalised the solutions to 2|E| particles per unit volume giving

Orthogonal solutions: u;ruk = 2|E|6j with j,k =1,2,3,4



What about spin?

* Consider the orbital angular momentum operator L = xp = —i¥xV: does it commute with Hp?

[Z, Hp| = [¥xp, (@ - p + pm)] = i&xp # 0 = angular momentum does not commute with H,
 The orbital angular momentum is NOT a conserved quantity of the quantum system

* Define the 4Xx4 operator % as an extension of the Pauli spin operator:

% operator: I = (2;,%,,%3) = (G 0)

0 o
01 0 0 0 —i 0 O 1 0 0 0
1 0 0 0 i o o0 o0 o -1 0 o0
21_0001' 22_000—1' 23_0010
0 0 1 0 0 0 i O 0 0 0 -1

« Compute the commutator of > with Hp

[f, }[D] = [f, (a-p+ [)’m)] = —2i(axp) # 0 = spin also does not commute with Hrp,
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Spin of a Dirac particle
L, Hp| = i@xp and [3, Hp| = —2i(@xP)

+ We can define the total angular momentum operator J

—
Il
]
_|_
N| =
M|
I
=~
_|_
Ly

« The quantity is conserved since its operator commutes with Hp,

[ Hp| =[L+S Hp| =0
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Spin of a Dirac particle

The Dirac equation describes a relativistic particles with spin-1/2

The 4x4 matrix spin operator S is

- 1. 1., 0
S = (51,52,53) _EZ — 5(0 O')

The components of S have the same commutation relations as the Pauli matrices and of orbital

angular momentum

[Sir S]] — ZiEiijk

The spin magnitude of the Dirac particle is given by S2Y = 5(s + 1)¥ where

5, 1 3
52=Z(2§+Z§+2§)=Z

o= OO
_ 0 O O

0
1
0
0

SO O



Spin of a Dirac particle: particle at rest

* Let's consider the spinors for particles at rest LPé (i=1,2,34)

0

LPél) =N|[0 ) imt LPéz) = N[ 1 \e~'™! with positive energy
0 0
0 0
0 0

‘P(gg) =N|[0])etimt ‘11(54) = N[ 0 | e*'™ with negative energy
1 0
0 1

* They are eigenstates of the diagonal operator S3:

1 0 0 O

=ty = t(e 0)_tf0 10 0
37277 2\0 a3/ 210 0 1 O
0 0 0 -1

* Corresponding to spin-up |T) and spin-down |T) eigenstates

25



Spin of a Dirac particle: moving particle

« Particle traveling along the z —direction, p = (0,0, £p)
 The solutions are given by
.« YD) = M o-pX for positive energy

o WG = B otipx o1 negative energy

1 0
ul =N iop , u:=N (1) , u>=N
E+m +p
0 E+m




Spin of a Dirac particle: moving particle

* Particle traveling along the z —direction, p = (0,0, =p)

Sgl‘lj(l) = + % l_Ij(l)

S, Y@ — _%me

531_11(3) = + % l‘I”(B)

S,W = _%LIJ(‘L)

* Spinors ¢ and ¢© represent spin-up
valid only for particles travelling along the z —direction

« Spinors ¥® and ¥® represent spin-down



Spin states

* In general, the spinors {u4, uy, v4, v, } are not eigenstates of S3

* Only valid for particles and antiparticles traveling along the z —direction

« Can be represented as graphically for (0,0, p) and (0,0, —p)

> S > <
—_—> —_— — N
Ui U Vi, W2
>

> Lo > Lo
+— 4t t— +—
Ui U Vi, W2
>

* More generally: we want to label our states in terms of “good quantum numbers”, i.e a set of

observables commuting with Hp, not only for particles that travel along the z —axis

 z —component of the spin would not work as [Hp, S3] # 0

* We must then introduce a new concept: “helicity”

28




Helicity of a Dirac particle

* The helicity operator represents the normalised projection of the spin along the direction of motion

S'p 25-p I-p
S|ipl - 1Bl 1Bl

of the particle
h

* The helicity operator commutes with H, for a free particle = it is possible to define spinors that are

simultaneous eigenstates of Hp and the helicity operator!

[f-ﬁ,?—[D] = [f-ﬁ,(c?-ﬁ+,8m)] = [ffﬁc?ﬁ] = 0, since [f,d’] =0

—>.—)2 2
. Note that h2 = = (- p) aoez =i2 P 2 =1
p? 0 (0 -p) ri\ 0 p°I

= h = %1 and for a spin-1/2 particle the spin is quantized to be either “up” or “down”

 Helicity is a good quantum number with eigenvalues +1 and —1!

29



Helicity of a Dirac particle

* These states are called positive or right-handed and negative or left-handed helicity states

7
h=+1

“right-handed” “left-handed”

* It we make a measurement of the component of spin of a spin-1/2 particle along any axis it can take

two values: +1/2

* The eigenvalues of the helicity operator for a spin-1/2 particle are h = +1
30



Helicity of a Dirac particle

Note that even though it is a conserved quantity for a free Dirac quantity, helicity is not a Lorentz-

invariant quantity
 For any massive particle: v < ¢

* There exists a boosted inertial frame where the particle momentum appears reversed (not true for a

massless particle travelling at the speed of light e.g. neutrinos)
 Relative to the boosted observer, the helicity of the particle will appear reversed

* The helicity is not invariant under Lorentz transformations (except for massless particles)

31



Helicity eigenstates

* See the complementary notes attached on moodle for a derivation of the helicity eigenstates

» Equivalent solutions and definition of right-handed and left-handed for antiparticles

particles
uj

anti-particles

right-handed left-handed

right-handed

left-handed
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Parity and time reversal

* Two discrete symmetries part of the Lorentz group
Parity P: x° —» x% x! - —x*
Time reversal T: x° - —x%x' > x'(i = 1,2,3)

* Find a representation S(P) and S(T) of them on a Dirac spinor so that:
Y(t,x) » S(P)¥(t,—x) and ¥(¢,x) » S(T)W(—t, x)

* Like rotations and boosts, the discrete transformations P and T should be representable by a 4x4

matrix, e.g. by the y matrices



Parity reversal operator P

* The operator P reverses the direction of the momentum p of a particle but it retains its spin

* The parity operator should satisfy: P~ = P and P2 =]

For simple handling of spin states, consider a particle moving along the z —direction (slide 26)

The parity should not mix spin-up and spin-down configurations as well as positive and negative

energy eigenstates

The parity matches u(E,B) o u(E,-p)

10 0 0 é é
0?2 0 0
SPE - =N o o || =P [ =N P | =wPE )
00 0 ) E+m E+m
p = (0,0,p) ' 0 0
10 0 0 (1) (1)
@ o1 0o o B @
SPhu;"(E,~p)=N| o o 1 0 |=N| o0 [=u"(EDp)
—p p
00 0 -1




Parity reversal operator P

* The representation of the parity operator is y°

* The spinor representation of the parity operation is
P:¥ - S(P)V¥ = npy°¥
* 7p is an overall unobservable phase

* For a particle/antiparticle at rest the solutions to the Dirac equations are

Y = ule—lmt; Y = uze—lmt; Y = vle+lmt; Y = 172€+lmt

1 0 0 0
U1=N 0 ) UZZN 1 ) v1=N 0 ) UZZN 0
0 0 0 1
0 0 1 0
10 0 0 1
01 0 0 0
SPrur=%14 o 1 o o) "
00 0 -1 0



Parity reversal operator P

* For all four spinors we get

S(P)u, = Fuy; S(P)v; = +vy;
S(P)u, = tuy; S(P)vy = +vy;

* Hence the anti-particle at rest has opposite intrinsic parity to a particle at rest

* Convention: particles are chosen to have positive parity, which is equivalent to choosing

S(P) = +y°



What are scalar, vector, etc. particles

* The names come from how objects transform under parity reversal:
» scalar is a constant: P(s) = s
 pseudoscalar flips the sign: P(p) = —p
« vector flips the sign: P(v) = —v

 pseudovector or axial vector is unchanged: P(d) = a

* The same names are used for particles according to how they transtorm under parity
« scalar: spin-0 particle with a positive parity 07, e.g. f; mesons (PDG)
» pseudoscalar: spin-0 particle with a negative parity 07, e.g. pions ¥, °

* vector: spin-1 particle with a negative parity 17, e.g. p, w, y, gluon

 pseudovector or axial vector: spin-1 particle with a positive parity 17, e.g. f; mesons



Charge conjugation operator C

* The operation that replaces each particle with its antiparticle and vice-versa keeping the spin

unchanged is performed by the charge conjugation operator C
 The charge conjugated spinor ¥, is defined as
Charge conjugation C: ¥ —» W, = CVP”

 In analogy with the Schrodinger equation, the Dirac equation for a particle of charge e in an external

electromagnetic field is:

(iy*(9, —ed,) —m)¥ =0 (12)
* For the charge conjugated particle (of charge —e) it should be
(iy“(au +eA,) — m)‘P =0 (13)

* Y. should satisty the above equation



Charge conjugation operator C

 Taking complex conjugate of (12) and multiplying by C we get

C(—ity")* (9, — edy) —m)C1CY =
= (—iCy")* (0, —ed) —m)¥c =0

 For Eq.13 to work we need
Cy#)y et = —y#
* In our representations, only y# is imaginary: C = iy works

Charge conjugation C: ¥ - ¥, = incy*¥P*

* 7)¢ is an unobservable global phase



Charge conjugation operator C

« We verify directly the effect of the charge conjugation on our specific particle and antiparticle solutions

using the spinors u® and v(¥ of the Dirac equation

px+ipy / 1
0 0 0 —i E+m 0
(1) >N — g 2 (1)*= . O 0 l 0 _pz — pz — (1) -
Cv\V(E,p) =iy“v o i 0 o N . N E+m u‘’(E,p)
—i 0 0 0 \ 0 / Px+le)
1 E+m
Dz 0
0 0 0 —i /E+m / 1 \
(2) >N o2 (2)*= . 0 0 l 0 px_ipy — _ px_lpy — _ (2) -
Cv\“(E,p) =iy“v o i o0 o N - N o u‘“(E,p)
—i 0 0 O

\ o S\
0 E+m
e The effect of the charge conjugation operator on the antiparticle spinors v and v®) is to transform them

into u™ and u® (up to an unobservable complex phase)



Time reversal operator T

Time reversal operator flips the momentum p and the spin

Like previously, we look for an operator T such that

Time reversal T: W(t,x) » S(T)W¥Y(—t¢, x)

The operator must be antiunitary satisfy T~ = —T and T? = —I

Consider the product y'y? (and use 6,05 = i€1330, = —ioy):

0 o 0 o —04,0 0 o 0
_ 1.3 _ 1 3) — 173 =i 2
S(T) =nry'y° =nr (_0.1 O)(—O'g 0) - T’T( 0 0'10'3) - ”7T< 0 0'2)

* where 77 is an overall unobservable phase



Time reversal operator T

« Again, a particle moving along the z —direction

0 —i 0 0 (1) (1)
| 0 0 0
SMuPEp)=ingN| o o o P |=-mN| o |=-nuPE D)
0 0 0 E+m 1%
L 0 E+m
0 —i 0 0 (1) (1)
| 0 0 0
S(MuS? (E,p) = ingN (l) 0 0 —i 0 |=nN| P |=nulPE p)
0 0 i 0 P E+m
E+m 0

« = the time reversal transformation changes spin and can be expressed as

Timereversal T: W - S(T)V¥ = nyly3¥



Summary

We formulated a relativistic quantum mechanics starting from the linear Dirac equation

- - al.IJ .
HpW =(a-p+LmVP = lE=> (lyﬂau—m)LP= 0

* new degrees of freedom: found to describe spin-1/2 particles

We introduced the 4-vector current and adjoint spinor:

jH = WTyOyhy = Pyhy

With the Dirac equation we can't escape from having two E > 0 and two E < 0 solutions

We used the Feynman-Stiicklenberg interpretation

« E > 0 solutions: positive energy particles propagating forward in time: ¥; = u;(E, p)e H{(#-¥=E0)

« E < 0 solutions: positive energy antiparticles propagating forward in time: ¥; = v;(E, e tB*-EL)

8 solution in total, only 4 independent: we chose to work with the E > 0 solutions {u4, u,, v1, 5}

Orthogonal solutions: u;ruk = 2|E|6j, with j,k =1,2,3,4



Summary

» The most useful basis: particle and antiparticle helicity eigenstates {1, u,, v;, v, }

* In terms of the 4-component spinors, the charge conjugation, parity and time reversal operations are:

Charge conjugation C : ¥ - ¥, = iny*¥*
Parity reversal P: ¥ - S(P)¥ = npy°¥

Timereversal T: W - S(TY =nyly3¥
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Summary of Lecture 7

Main learning outcomes

* Dirac equation
* 4-vector current and adjoint spinors
* solutions in terms of particle spinors representing spin-1/2 particles

* choosing the appropriate basis of spinors
* Spin and helicity operators

* Charge, Parity and Time reversal operators acting on spinors



