

Particle Physics I

Lecture 7: The Dirac equation continued

Prof. Radoslav Marchevski October 16th 2024

Recap and learning targets

- **Ultimate goal:** make predictions of particle decay rates and cross sections of particle scattering and compare the experimental results with the theoretical predictions
- Procedure: use Fermi's golden rule: $\Gamma_{fi} = 2\pi \left| T_{fi} \right|^2 \rho(E_f)$
 - ✓ derive the expression for the density of final states (phase space) $\rho(E_f)$
 - x calculate the matrix elements: our next target (this semester we will focus on quantum electrodynamics)

Today's learning targets

- solve Dirac's equation to find explicit forms of the wavefunctions of spin-half particles
- spin and helicity operators
- some fundamental symmetries: parity, charge conjugation, time reversal

Dirac equation and the properties of the γ matrices

• The Dirac equation can be written more elegantly by introducing the four Dirac gamma matrices

$$\gamma^0 = \beta, \qquad \gamma^1 = \beta \alpha_x, \qquad \gamma^2 = \beta \alpha_y, \qquad \gamma^3 = \beta \alpha_z$$
(1)

• Using $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ we can rewrite it as

$$(i\gamma^{\mu}\partial_{\mu} - m)\Psi = 0 \tag{2}$$

- Properties of the α and β matrices: $\alpha_x=\alpha_x^\dagger$, $\alpha_y=\alpha_y^\dagger$, $\alpha_z=\alpha_z^\dagger$, $\beta=\beta^\dagger$
- For the γ matrices the full set of relations is:

$$(\gamma^0)^2 = I$$

$$(\gamma^1)^2 = (\gamma^2)^2 = (\gamma^3)^2 = -1$$

$$\gamma^0 \gamma^j + \gamma^j \gamma^0 = 0$$

$$\gamma^k \gamma^j + \gamma^j \gamma^k = 0 \ (k \neq j)$$

• Which can be expresses as the anti-commutation rule (Clifford algebra):

$$\{\gamma^{\mu},\gamma^{\nu}\}=\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2g^{\mu\nu}$$

Properties of the γ matrices

- Are the γ matrices Hermitian?
 - the β matrix is Hermitian $\Rightarrow \gamma^0$ is also Hermitian
 - the α matrices are Hermitian giving:

$$\gamma^{1\dagger} = (\beta \alpha_x)^{\dagger} = \alpha_x^{\dagger} \beta^{\dagger} = \alpha_x \beta = -\beta \alpha_x = -\gamma^1$$

- From which follows that $\gamma^i (i = 1, 2, 3)$ are anti-Hermitian
- In summary:

$$\gamma^{0\dagger}=\gamma^0$$
, $\gamma^{1\dagger}=-\gamma^1$, $\gamma^{2\dagger}=-\gamma^2$, $\gamma^{3\dagger}=-\gamma^3$

• Which can be expresses using a four-vector notation as

$$(\gamma^{\mu})^{\dagger} = \gamma^0 \, \gamma^{\mu} \, \gamma^0$$

Pauli-Dirac representation

• A possible numerical form of the γ –matrices:

$$\gamma^0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \qquad \qquad \gamma^k = \begin{pmatrix} 0 & \sigma_k \\ -\sigma_k & 0 \end{pmatrix}$$

• Which written in full are:

$$\gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \gamma^1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},$$

$$\gamma^2 = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix}, \gamma^3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$

Four-vector current and adjoint spinor

• Using the γ matrices $\rho = \Psi^{\dagger}\Psi$ and $\vec{j} = \Psi^{\dagger}\vec{\alpha}\Psi$ can be written as a four-vector current:

$$j^{\mu} = (\rho, \vec{j}) = \Psi^{\dagger} \gamma^{0} \gamma^{\mu} \Psi$$

• The continuity equation can be written in a Lorentz-invariant form of a 4-vector scalar product:

$$\partial_{\mu}j^{\mu}=0$$

• The expression for the four-vector current $j^{\mu} = \Psi^{\dagger} \gamma^{0} \gamma^{\mu} \Psi$ can be simplified by introducing the **adjoint spinor** $\overline{\Psi}$

$$\overline{\Psi} = \Psi^{\dagger} \gamma^0$$

Four-vector current and adjoint spinor

$$\overline{\Psi} = \Psi^{\dagger} \gamma^{0}$$

$$\overline{\Psi} = \Psi^{\dagger} \gamma^{0} = (\Psi^{*})^{T} \gamma^{0} = (\Psi_{1}^{*}, \Psi_{2}^{*}, \Psi_{3}^{*}, \Psi_{4}^{*}) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$\overline{\Psi} = (\Psi_{1}^{*}, \Psi_{2}^{*}, -\Psi_{3}^{*}, -\Psi_{4}^{*})$$

• In terms of the adjoint spinor the four-vector current can be written as

$$j^{\mu} = \overline{\Psi} \gamma^{\mu} \Psi$$

And the adjoint (covariant) Dirac equation becomes

$$\left(i\partial_{\mu}\overline{\Psi}\gamma^{\mu}+m\overline{\Psi}\right)=0\Longrightarrow i\partial_{\mu}\overline{\Psi}\gamma^{\mu}=-m\overline{\Psi}$$

The Dirac equation: solution for a free particle at rest

• For a free particle (V = 0) at rest ($\vec{p} = 0$) we obtained four solutions:

$$\Psi_0^{(1)} = N \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} e^{-imt}, \qquad \Psi_0^{(2)} = N \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} e^{-imt}, \text{ with positive energy}$$

$$\Psi_0^{(3)} = N \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} e^{+imt}, \qquad \Psi_0^{(4)} = N \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} e^{+imt}, \text{ with negative energy}$$

• Four solutions: two with positive energy (E > 0) and two with negative energy (E < 0)

$$(\gamma^{\mu}p_{\mu}-m)\Psi=0$$

• We are looking for the solutions for a free particle with four-momentum $p^{\mu}=(E,\vec{p})$ in the form $\Psi=u(E,\vec{p})e^{i(\vec{p}\cdot\vec{x}-Et)}$

$$\begin{split} \gamma^{\mu}p_{\mu} - m &= \gamma^{0}E - \vec{\gamma} \cdot \vec{p} - m \\ &= \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} E - \begin{pmatrix} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix} \cdot \vec{p} - m \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \\ &= \begin{pmatrix} (E - m)I & -\vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -(E + m)I \end{pmatrix} \end{split}$$

• We can write the four-component spinor $u(E, \vec{p})$ as $u = \begin{pmatrix} u_A \\ u_B \end{pmatrix}$

$$(\gamma^{\mu}p_{\mu} - m)\Psi = 0 \Longrightarrow \begin{pmatrix} (E - m)I & -\vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -(E + m)I \end{pmatrix} \begin{pmatrix} u_{A} \\ u_{B} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• We get two coupled simultaneous equations for u_A and u_B

$$\begin{cases}
(\vec{\sigma} \cdot \vec{p})u_B = (E - m)u_A \\
(\vec{\sigma} \cdot \vec{p})u_A = (E + m)u_B
\end{cases} \tag{3}$$

• Using the explicit form of the Pauli matrices we get

$$\vec{\sigma} \cdot \vec{p} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} p_x - \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} p_y + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} p_z$$

$$= \begin{pmatrix} p_z & p_x - ip_y \\ p_x + ip_y & -p_z \end{pmatrix}$$
(5)

• From Eq.4 and Eq. 5 we get

$$u_B = \frac{\vec{\sigma} \cdot \vec{p}}{E + m} u_A = \frac{1}{E + m} \begin{pmatrix} p_z & p_x - ip_y \\ p_x + ip_y & -p_z \end{pmatrix} u_A$$

• Solutions can be obtained by making the arbitrary (but simplest) choices for u_A :

$$u_{A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow u_{1} = N_{1} \begin{pmatrix} 1 \\ 0 \\ \frac{p_{Z}}{E + m} \\ \frac{p_{X} + ip_{Y}}{E + m} \end{pmatrix}$$
normalisation factors
$$u_{A} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow u_{2} = N_{2} \begin{pmatrix} 0 \\ 1 \\ \frac{p_{X} - ip_{Y}}{E + m} \\ \frac{-p_{Z}}{E + m} \end{pmatrix}$$

$$(6)$$

- Note: for $\vec{p} = 0$ we get the E > 0 particle-at-rest solutions
- The choice of u_A is arbitrary but that's not an issue because we can express any other solution choice as a linear combination

• Repeating the same procedure for u_B :

$$u_{B} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow u_{3} = N_{3} \begin{pmatrix} \frac{p_{z}}{E - m} \\ p_{x} + ip_{y} \\ E - m \\ 1 \\ 0 \end{pmatrix}$$
normalisation factors
$$u_{B} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow u_{4} = N_{4} \begin{pmatrix} \frac{p_{x} - ip_{y}}{E - m} \\ -p_{z} \\ E - m \\ 0 \\ 1 \end{pmatrix}$$

$$(9)$$

• If any of these solutions is put back into the Dirac equation, we obtain $E^2 = \vec{p}^2 + m^2$, which doesn't in itself identify the negative solutions

The Dirac equation: negative energy solutions

- It's not possible to interpret all four solutions as positive energy solutions
 - if we take all solutions to have the same value of E: E = +|E| only two of the solutions are independent
 - there are only four independent solutions when two are taken to have E < 0
- To identify which solutions have E < 0 we can refer back to particle at rest, for $\vec{p} = 0$
 - u_1 and u_2 correspond to the E > 0 particle at rest solution
 - u_3 and u_4 correspond to the E < 0 particle at rest solution
- So u_1, u_2 are the positive energy solutions and u_3, u_4 the negative energy solutions

The Dirac equation: antiparticles

- Feynman-Stücklenberg interpretation:
 - Approach 1: negative energy solution interpreted as a negative energy particle propagating backwards in time
 - the time dependence of the wavefunction becomes: $e^{-iEt} = e^{-i(-E)(-t)}$
 - Approach 2: alternatively, it can be interpreted as a positive energy antiparticle propagating forward in time
- Following this interpretation we will work with antiparticle wavefunctions with $E = \sqrt{|\vec{p}|^2 + m^2}$

The Dirac equation: Approach 1

• **Approach 1:** start from the negative energy solutions

$$u_3 = N_3 \begin{pmatrix} \frac{p_z}{E - m} \\ \frac{p_x + ip_y}{E - m} \\ 1 \\ 0 \end{pmatrix}, \qquad u_4 = N_4 \begin{pmatrix} \frac{p_x - ip_y}{E - m} \\ \frac{-p_z}{E - m} \\ 0 \\ 1 \end{pmatrix}$$

• "Define" antiparticle wavefunction by flipping the sign of E and \vec{p} and with E now being positive

$$E = \sqrt{|\vec{p}|^2 + m^2}$$

$$v_1(E, \vec{p})e^{-i(\vec{p}\cdot\vec{x}-Et)} = u_4(-E, -\vec{p})e^{i(\vec{p}\cdot\vec{x}-Et)}$$

$$v_2(E, \vec{p})e^{-i(\vec{p}\cdot\vec{x}-Et)} = u_3(-E, -\vec{p})e^{i(\vec{p}\cdot\vec{x}-Et)}$$

The Dirac equation: Approach 2

• Approach 2: find negative energy plane-wave solutions to the Dirac equation of the form

$$\Psi = v(E, \vec{p})e^{-i(\vec{p}\cdot\vec{x}-Et)}$$
, where $E = \sqrt{|\vec{p}|^2 + m^2}$

- Although E > 0 these are still negative energy solutions: $\widehat{H}\Psi = i\partial_t \Psi = -E\Psi$
- Putting Ψ in the Dirac equation: $(i\gamma^{\mu}\partial_{\mu}-m)\Psi=0$ we get

$$(-\gamma^0 E + \gamma^1 p_x + \gamma^2 p_y + \gamma^3 p_z - m)v = 0$$
$$\Rightarrow (\gamma^\mu p_\mu + m)v = 0$$

Dirac equation in terms of momentum for antiparticles

Reminder: $(\gamma^{\mu}p_{\mu} - m)u = 0$ was the solution for particles

The Dirac equation: Approach 2

 $u_3(-E, -\vec{p}) = v_2(E, \vec{p})$

• We again get two coupled simultaneous equations this time for v_A and v_B

$$\begin{cases}
(\vec{\sigma} \cdot \vec{p})v_A = (E - m)v_B \\
(\vec{\sigma} \cdot \vec{p})v_B = (E + m)v_A
\end{cases} \tag{10}$$

antiparticles
$$E>0$$

$$v_1=N_1'\begin{pmatrix}\frac{p_x-ip_y}{E+m}\\-p_z\\\overline{E+m}\\0\\1\end{pmatrix}, \qquad v_2=N_2'\begin{pmatrix}\frac{p_z}{E+m}\\p_x+ip_y\\\overline{E+m}\\1\\0\end{pmatrix}$$

$$u_4(-E,-\vec{p})=v_1(E,\vec{p})$$

particles
$$E < 0$$

$$u_4 = N_4 \begin{pmatrix} \frac{p_x - ip_y}{E - m} \\ \frac{-p_z}{E - m} \\ 0 \\ 1 \end{pmatrix}, \qquad u_3 = N_3 \begin{pmatrix} \frac{p_z}{E - m} \\ \frac{p_x + ip_y}{E - m} \\ 1 \\ 0 \end{pmatrix}$$

The Dirac equation: particle and antiparticle spinors

• Four solution for "particles" of the form $\Psi_i = u_i(E, \vec{p})e^{i(\vec{p}\cdot\vec{x}-Et)}$

$$u_{1} = N_{1} \begin{pmatrix} 1 \\ 0 \\ \frac{p_{z}}{E + m} \\ \frac{p_{x} + ip_{y}}{E + m} \end{pmatrix}, u_{2} = N_{2} \begin{pmatrix} 0 \\ 1 \\ \frac{p_{x} - ip_{y}}{E + m} \\ \frac{-p_{z}}{E + m} \end{pmatrix}, u_{3} = N_{3} \begin{pmatrix} \frac{p_{z}}{E - m} \\ \frac{p_{x} + ip_{y}}{E - m} \\ 1 \\ 0 \end{pmatrix}, u_{4} = N_{4} \begin{pmatrix} \frac{p_{x} - ip_{y}}{E - m} \\ \frac{-p_{z}}{E - m} \\ 0 \\ 1 \end{pmatrix}$$

$$u_1(-E, -\vec{p}) = v_3(E, \vec{p}) u_2(-E, -\vec{p}) = v_4(E, \vec{p})$$

$$E = \sqrt{|\vec{p}|^2 + m^2}$$

$$E = -\sqrt{|\vec{p}|^2 + m^2}$$

• Four solution for "antiparticles" of the form $\Psi_i = v_i(E, \vec{p})e^{-i(\vec{p}\cdot\vec{x}-Et)}$

$$v_{1} = N'_{1} \begin{pmatrix} \frac{p_{x} - ip_{y}}{E + m} \\ \frac{-p_{z}}{E + m} \\ 0 \\ 1 \end{pmatrix}, v_{2} = N'_{2} \begin{pmatrix} \frac{p_{z}}{E + m} \\ \frac{p_{x} + ip_{y}}{E + m} \\ 1 \\ 0 \end{pmatrix}, v_{3} = N'_{3} \begin{pmatrix} 1 \\ 0 \\ \frac{p_{z}}{E - m} \\ \frac{p_{x} + ip_{y}}{E - m} \end{pmatrix}, v_{4} = N'_{4} \begin{pmatrix} 0 \\ 1 \\ \frac{p_{x} - ip_{y}}{E - m} \\ \frac{-p_{z}}{E - m} \end{pmatrix}$$

$$u_{4}(-E, -\vec{p}) = v_{1}(E, \vec{p}) u_{3}(-E, -\vec{p}) = v_{2}(E, \vec{p})$$

$$E = \sqrt{|\vec{p}|^{2} + m^{2}}$$

$$E = -\sqrt{|\vec{p}|^{2} + m^{2}}$$
 18

The Dirac equation: particle and antiparticle spinors

- We have a four-component spinor \Rightarrow only four are linearly independent
 - a natural choice is to use positive energy solutions: $\{u_1, u_2, v_1, v_2\}$

particles

$$u_{1} = N_{1} \begin{pmatrix} 1 \\ 0 \\ \frac{p_{z}}{E + m} \\ \frac{p_{x} + ip_{y}}{E + m} \end{pmatrix}, u_{2} = N_{2} \begin{pmatrix} 0 \\ 1 \\ \frac{p_{x} - ip_{y}}{E + m} \\ \frac{-p_{z}}{E + m} \end{pmatrix}$$

$$E = \sqrt{|\vec{p}|^2 + m^2}$$

antiparticles

$$u_{1} = N_{1} \begin{pmatrix} 1 \\ 0 \\ p_{z} \\ \overline{E + m} \\ \frac{p_{x} + ip_{y}}{E + m} \end{pmatrix}, u_{2} = N_{2} \begin{pmatrix} 0 \\ 1 \\ \frac{p_{x} - ip_{y}}{E + m} \\ -p_{z} \\ \overline{E + m} \end{pmatrix}, v_{1} = N_{1}' \begin{pmatrix} \frac{p_{x} - ip_{y}}{E + m} \\ -p_{z} \\ \overline{E + m} \\ 0 \\ 1 \end{pmatrix}, v_{2} = N_{2}' \begin{pmatrix} \frac{p_{z}}{E + m} \\ \frac{p_{x} + ip_{y}}{E + m} \\ 1 \\ 0 \end{pmatrix}$$

$$E = \sqrt{|\vec{p}|^2 + m^2}$$

Normalisation and orthogonality

- The convention is to normalise the wavefunctions to 2|E| particles per unit volume
- For $\Psi = u_1 e^{i(\vec{p}\cdot\vec{x}-Et)}$ the probability density is $\rho = \Psi^{\dagger}\Psi = u_1^{\dagger}u_1^{\dagger} = |N_1|^2 \frac{2E}{E+m}$
- We are using only E > 0 solutions so we get for $\{u_1, u_2, v_1, v_2\}$:

$$N_1 = N_2 = N_1' = N_2' = N = \sqrt{E + m}$$

• The spinors are orthogonal

$$u_j^{\dagger} u_k = 0 \text{ for } j \neq k$$

$$u_j^{\dagger} u_k = 2|E|\delta_{jk} \text{ with } j, k = 1, 2, 3, 4$$

Short recap

• We solved the covariant Dirac equation for a free particle both at rest and in motion

$$(i\gamma^{\mu}\partial_{\mu}-m)\Psi=0$$

- We found four solutions for **particles** with 4-momentum $p^{\mu} = (E, \vec{p})$: $\Psi_i = u_i(E, \vec{p})e^{+i(\vec{p}\cdot\vec{x}-Et)}$
 - two solutions with E > 0 and two with E < 0
- We used the Feynman-Stücklenberg interpretation to interpret the negative solutions as positive energy **antiparticles** propagating forward in time: $\Psi_i = v_i(E, \vec{p})e^{-i(\vec{p}\cdot\vec{x}-Et)}$
 - two solutions with E > 0 and two with E < 0
- 8 solution in total, only 4 independent: we chose to work with the E > 0 solutions $\{u_1, u_2, v_1, v_2\}$
- We normalised the solutions to 2|E| particles per unit volume giving

$$v_1(E, \vec{p}) = u_4(-E, -\vec{p})$$

 $v_2(E, \vec{p}) = u_3(-E, -\vec{p})$

• Orthogonal solutions: $u_j^{\dagger}u_k = 2|E|\delta_{jk}$ with j, k = 1, 2, 3, 4

What about spin?

• Consider the orbital angular momentum operator $\vec{L} = \vec{x} \times \vec{p} = -i\vec{x} \times \vec{\nabla}$: does it commute with \mathcal{H}_D ?

$$[\vec{L}, \mathcal{H}_D] = [\vec{x} \times \vec{p}, (\vec{\alpha} \cdot \vec{p} + \beta m)] = i\vec{\alpha} \times \vec{p} \neq 0 \implies \text{angular momentum does not commute with } \mathcal{H}_D$$

- The orbital angular momentum is **NOT** a conserved quantity of the quantum system
- Define the 4×4 operator $\vec{\Sigma}$ as an extension of the Pauli spin operator:

$$\vec{\Sigma}$$
 operator: $\vec{\Sigma} = (\Sigma_1, \Sigma_2, \Sigma_3) \equiv \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix}$

$$\Sigma_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad \Sigma_2 = \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}, \qquad \Sigma_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

• Compute the commutator of $\vec{\Sigma}$ with \mathcal{H}_D

$$\left[\vec{\Sigma}, \mathcal{H}_D\right] = \left[\vec{\Sigma}, (\vec{\alpha} \cdot \vec{p} + \beta m)\right] = -2i(\vec{\alpha} \times \vec{p}) \neq 0 \implies \text{spin also does not commute with } \mathcal{H}_D$$

Spin of a Dirac particle

$$[\vec{L}, \mathcal{H}_D] = i\vec{\alpha} \times \vec{p} \text{ and } [\vec{\Sigma}, \mathcal{H}_D] = -2i(\vec{\alpha} \times \vec{p})$$

• We can define the **total angular momentum operator** \vec{J}

$$\vec{J} \equiv \vec{L} + \frac{1}{2}\vec{\Sigma} = \vec{L} + \vec{S}$$

• The quantity is conserved since its operator commutes with \mathcal{H}_D

$$\left[\vec{J}, \mathcal{H}_D\right] = \left[\vec{L} + \vec{S}, \mathcal{H}_D\right] = 0$$

Spin of a Dirac particle

- The Dirac equation describes a relativistic particles with spin-1/2
- The 4×4 matrix spin operator S is

$$\vec{S} = (S_1, S_2, S_3) = \frac{1}{2}\vec{\Sigma} = \frac{1}{2} \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix}$$

• The components of *S* have the same commutation relations as the Pauli matrices and of orbital angular momentum

$$\left[S_i, S_j\right] = 2i\epsilon_{ijk}S_k$$

• The spin magnitude of the Dirac particle is given by $\vec{S}^2\Psi = s(s+1)\Psi$ where

$$\vec{S}^2 = \frac{1}{4} (\Sigma_1^2 + \Sigma_2^2 + \Sigma_3^2) = \frac{3}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Spin of a Dirac particle: particle at rest

• Let's consider the spinors for particles at rest $\Psi_0^i (i = 1, 2, 3, 4)$

$$\Psi_0^{(1)} = N \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} e^{-imt}, \qquad \Psi_0^{(2)} = N \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} e^{-imt}, \text{ with positive energy}$$

$$\Psi_0^{(3)} = N \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} e^{+imt}, \qquad \Psi_0^{(4)} = N \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} e^{+imt}, \text{ with negative energy}$$

• They are eigenstates of the diagonal operator S_3 :

$$S_3 = \frac{1}{2}\Sigma_3 = \frac{1}{2} \begin{pmatrix} \sigma_3 & 0 \\ 0 & \sigma_3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Corresponding to spin-up |↑⟩ and spin-down |↑⟩ eigenstates

Spin of a Dirac particle: moving particle

- Particle traveling along the *z* –direction, $p = (0,0,\pm p)$
- The solutions are given by
 - $\Psi^{(1,2)} = u_z^{(1,2)} e^{-ipx}$ for positive energy
 - $\Psi^{(3,4)} = u_z^{(3,4)} e^{+ipx}$ for negative energy

$$u_z^1 = N \begin{pmatrix} 1 \\ 0 \\ \frac{\pm p}{E+m} \end{pmatrix}, \qquad u_z^2 = N \begin{pmatrix} 0 \\ 1 \\ 0 \\ \frac{\mp p}{E+m} \end{pmatrix}, \qquad u_z^3 = N \begin{pmatrix} \frac{\pm p}{E-m} \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad u_z^4 = N \begin{pmatrix} 0 \\ \frac{\mp p}{E-m} \\ 0 \\ 1 \end{pmatrix}$$

Spin of a Dirac particle: moving particle

• Particle traveling along the *z* –direction, $p = (0,0,\pm p)$

$$S_3\Psi^{(1)} = +\frac{1}{2}\Psi^{(1)}$$

$$S_3 \Psi^{(2)} = -\frac{1}{2} \Psi^{(2)}$$

$$S_3 \Psi^{(3)} = +\frac{1}{2} \Psi^{(3)}$$

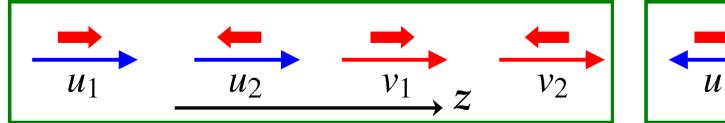
$$S_3 \Psi^{(4)} = -\frac{1}{2} \Psi^{(4)}$$

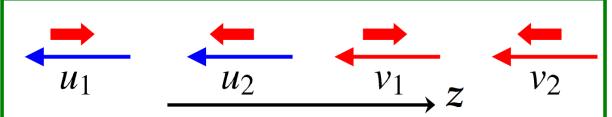
- Spinors $\Psi^{(1)}$ and $\Psi^{(3)}$ represent spin-up
- Spinors $\Psi^{(2)}$ and $\Psi^{(4)}$ represent spin-down

valid only for particles travelling along the z –direction

Spin states

- In general, the spinors $\{u_1, u_2, v_1, v_2\}$ are not eigenstates of S_3
- Only valid for particles and antiparticles traveling along the z —direction
- Can be represented as graphically for (0,0,p) and (0,0,-p)





- More generally: we want to label our states in terms of "good quantum numbers", i.e a set of observables commuting with \mathcal{H}_D , not only for particles that travel along the z –axis
- z –component of the spin would not work as $[\mathcal{H}_D, S_3] \neq 0$
- We must then introduce a new concept: "helicity"

Helicity of a Dirac particle

• The **helicity operator** represents the normalised projection of the spin along the direction of motion of the particle $\vec{c} \rightarrow \vec{c} \rightarrow \vec{c}$

$$h \equiv \frac{\vec{S} \cdot \vec{p}}{|\vec{S}||\vec{p}|} = \frac{2\vec{S} \cdot \vec{p}}{|\vec{p}|} = \frac{\vec{\Sigma} \cdot \vec{p}}{|\vec{p}|}$$

• The helicity operator commutes with \mathcal{H}_D for a free particle \Rightarrow it is possible to define spinors that are simultaneous eigenstates of \mathcal{H}_D and the helicity operator!

$$\left[\vec{\Sigma}\cdot\vec{p},\mathcal{H}_{D}\right]=\left[\vec{\Sigma}\cdot\vec{p},(\vec{\alpha}\cdot\vec{p}+\beta m)\right]=\left[\vec{\Sigma}\cdot\vec{p},\vec{\alpha}\cdot\vec{p}\right]=0,\text{since }\left[\vec{\Sigma},\vec{\alpha}\right]=0$$

- Note that $h^2 = \frac{1}{p^2} \begin{pmatrix} (\vec{\sigma} \cdot \vec{p})^2 & 0 \\ 0 & (\vec{\sigma} \cdot \vec{p})^2 \end{pmatrix} = \frac{1}{p^2} \begin{pmatrix} p^2 I & 0 \\ 0 & p^2 I \end{pmatrix} = I$
- $\Rightarrow h = \pm 1$ and for a spin-1/2 particle the spin is quantized to be either "up" or "down"
- Helicity is a good quantum number with eigenvalues +1 and -1!

Helicity of a Dirac particle

• These states are called **positive** or **right-handed** and **negative** or **left-handed** helicity states

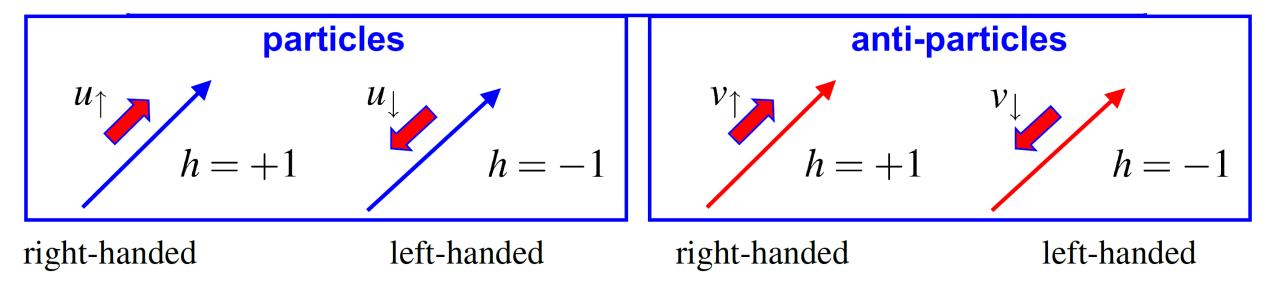
- If we make a measurement of the component of spin of a spin-1/2 particle along any axis it can take two values: $\pm 1/2$
- The eigenvalues of the helicity operator for a spin-1/2 particle are $h = \pm 1$

Helicity of a Dirac particle

- Note that even though it is a conserved quantity for a free Dirac quantity, helicity is not a Lorentzinvariant quantity
- For any massive particle: v < c
- There exists a boosted inertial frame where the particle momentum appears reversed (not true for a massless particle travelling at the speed of light e.g. neutrinos)
- Relative to the boosted observer, the helicity of the particle will appear reversed
- The helicity is not invariant under Lorentz transformations (except for massless particles)

Helicity eigenstates

- See the complementary notes attached on moodle for a derivation of the helicity eigenstates
- Equivalent solutions and definition of right-handed and left-handed for antiparticles



Parity and time reversal

• Two discrete symmetries part of the Lorentz group

Parity P:
$$x^0 \to x^0$$
; $x^i \to -x^i$
Time reversal T: $x^0 \to -x^0$; $x^i \to x^i (i = 1, 2, 3)$

• Find a representation S(P) and S(T) of them on a Dirac spinor so that:

$$\Psi(t, \vec{x}) \to S(P)\Psi(t, -\vec{x})$$
 and $\Psi(t, \vec{x}) \to S(T)\Psi(-t, \vec{x})$

• Like rotations and boosts, the discrete transformations P and T should be representable by a 4×4 matrix, e.g. by the γ matrices

Parity reversal operator P

- The operator P reverses the direction of the momentum \vec{p} of a particle but it retains its spin
- The parity operator should satisfy: $P^{-1} = P$ and $P^2 = I$
- For simple handling of spin states, consider a particle moving along the z –direction (slide 26)
- The parity should not mix spin-up and spin-down configurations as well as positive and negative energy eigenstates
- The parity matches $u_z^{(i)}(E,\vec{p}) \leftrightarrow u_z^{(i)}(E,-\vec{p})$ $S(P)u_z^{(1)}(E,-p) = N \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & ? & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & ? \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -p \\ E+m \end{pmatrix} = N \begin{pmatrix} 1 \\ 0 \\ p \\ E+m \end{pmatrix} = u_z^{(1)}(E,p)$ $\vec{p} = (0,0,p)$ $S(P)u_z^{(2)}(E,-p) = N \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -p \\ E+m \end{pmatrix} = N \begin{pmatrix} 0 \\ 1 \\ 0 \\ p \\ E+m \end{pmatrix} = u_z^{(2)}(E,p)$

Parity reversal operator **P**

- The representation of the parity operator is γ^0
- The spinor representation of the parity operation is

$$P: \Psi \to S(P)\Psi = \eta_P \gamma^0 \Psi$$

- η_P is an overall unobservable phase
- For a particle/antiparticle at rest the solutions to the Dirac equations are

$$\Psi = u_1 e^{-imt}; \Psi = u_2 e^{-imt}; \Psi = v_1 e^{+imt}; \Psi = v_2 e^{+imt}$$

$$u_{1} = N \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad u_{2} = N \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad v_{1} = N \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \qquad v_{2} = N \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$S(P)u_1 = \pm \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \pm u_1$$

Parity reversal operator **P**

• For all four spinors we get

$$S(P)u_1 = \pm u_1;$$
 $S(P)v_1 = \mp v_1;$ $S(P)u_2 = \pm u_2;$ $S(P)v_2 = \mp v_2;$

- Hence the anti-particle at rest has opposite intrinsic parity to a particle at rest
- Convention: particles are chosen to have positive parity, which is equivalent to choosing

$$S(P) = +\gamma^0$$

What are scalar, vector, etc. particles

- The names come from how objects transform under parity reversal:
 - **scalar** is a constant: P(s) = s
 - **pseudoscalar** flips the sign: P(p) = -p
 - **vector** flips the sign: $P(\vec{v}) = -\vec{v}$
 - **pseudovector** or **axial vector** is unchanged: $P(\vec{a}) = \vec{a}$

- The same names are used for particles according to how they transform under parity
 - scalar: spin-0 particle with a positive parity 0^+ , e.g. f_0 mesons (PDG)
 - **pseudoscalar:** spin-0 particle with a negative parity 0^- , e.g. pions π^{\pm} , π^0
 - **vector:** spin-1 particle with a negative parity 1^- , e.g. ρ , ω , γ , gluon
 - **pseudovector** or **axial vector**: spin-1 particle with a positive parity 1^+ , e.g. f_1 mesons

Charge conjugation operator C

- The operation that replaces each particle with its antiparticle and vice-versa keeping the spin unchanged is performed by the **charge conjugation operator** *C*
- The charge conjugated spinor Ψ_C is defined as

Charge conjugation
$$C: \Psi \to \Psi_C = C\Psi^*$$

• In analogy with the Schrödinger equation, the Dirac equation for a particle of charge *e* in an external electromagnetic field is:

$$\left(i\gamma^{\mu}(\partial_{\mu} - eA_{\mu}) - m\right)\Psi = 0 \tag{12}$$

• For the charge conjugated particle (of charge -e) it should be

$$\left(i\gamma^{\mu}(\partial_{\mu} + eA_{\mu}) - m\right)\Psi = 0 \tag{13}$$

• Ψ_C should satisfy the above equation

Charge conjugation operator C

• Taking complex conjugate of (12) and multiplying by *C* we get

$$C(-i(\gamma^{\mu})^{*}(\partial_{\mu} - eA_{\mu}) - m)C^{-1}C\Psi =$$

$$= (-iC(\gamma^{\mu})^{*}C^{-1}(\partial_{\mu} - eA_{\mu}) - m)\Psi_{C} = 0$$

• For Eq.13 to work we need

$$C(\gamma^{\mu})^*C^{-1} = -\gamma^{\mu}$$

• In our representations, only γ^2 is imaginary: $C = i\gamma^2$ works

Charge conjugation
$$C: \Psi \to \Psi_C = i\eta_C \gamma^2 \Psi^*$$

• η_C is an unobservable global phase

Charge conjugation operator $m{\mathcal{C}}$

• We verify directly the effect of the charge conjugation on our specific particle and antiparticle solutions using the spinors $u^{(i)}$ and $v^{(i)}$ of the Dirac equation

$$Cv^{(1)}(E,\vec{p}) = i\gamma^{2}v^{(1)*} = i\begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} N \begin{pmatrix} \frac{p_{x} + ip_{y}}{E + m} \\ \frac{-p_{z}}{E + m} \\ 0 \\ 1 \end{pmatrix} = N \begin{pmatrix} 1 \\ 0 \\ \frac{p_{z}}{E + m} \\ \frac{p_{x} + ip_{y}}{E + m} \end{pmatrix} = u^{(1)}(E,\vec{p})$$

$$Cv^{(2)}(E,\vec{p}) = i\gamma^{2}v^{(2)*} = i \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} N \begin{pmatrix} \frac{p_{z}}{E + m} \\ \frac{p_{x} - ip_{y}}{E + m} \\ 1 \\ 0 \end{pmatrix} = -N \begin{pmatrix} 0 \\ 1 \\ \frac{p_{x} - ip_{y}}{E + m} \\ \frac{-p_{z}}{E + m} \end{pmatrix} = -u^{(2)}(E,\vec{p})$$

• The effect of the charge conjugation operator on the antiparticle spinors $v^{(1)}$ and $v^{(2)}$ is to transform them into $u^{(1)}$ and $u^{(2)}$ (up to an unobservable complex phase)

Time reversal operator T

- Time reversal operator flips the momentum \vec{p} and the spin
- Like previously, we look for an operator *T* such that

Time reversal T:
$$\Psi(t, \vec{x}) \rightarrow S(T)\Psi(-t, \vec{x})$$

- The operator must be antiunitary satisfy $T^{-1} = -T$ and $T^2 = -I$
- Consider the product $\gamma^1 \gamma^3$ (and use $\sigma_1 \sigma_3 = i \epsilon_{123} \sigma_2 = -i \sigma_2$):

$$S(T) = \eta_T \gamma^1 \gamma^3 = \eta_T \begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix} = \eta_T \begin{pmatrix} -\sigma_1 \sigma_3 & 0 \\ 0 & \sigma_1 \sigma_3 \end{pmatrix} = i \eta_T \begin{pmatrix} \sigma_2 & 0 \\ 0 & \sigma_2 \end{pmatrix}$$

• where η_T is an overall unobservable phase

Time reversal operator T

• Again, a particle moving along the z —direction

$$S(T)u_{z}^{(1)}(E,p) = i\eta_{T}N\begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ \overline{E+m} \\ 0 \end{pmatrix} = -\eta_{T}N\begin{pmatrix} 0 \\ 1 \\ 0 \\ \overline{E+m} \end{pmatrix} = -\eta_{T}u_{z}^{(2)}(E,p)$$

$$S(T)u_{z}^{(2)}(E,p) = i\eta_{T}N\begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \\ 0 \\ \overline{p} \\ \overline{E+m} \end{pmatrix} = \eta_{T}u_{z}^{(1)}(E,p)$$

• \Rightarrow the time reversal transformation changes spin and can be expressed as

Time reversal T: $\Psi \to S(T)\Psi = \eta_T \gamma^1 \gamma^3 \Psi$

Summary

• We formulated a relativistic quantum mechanics starting from the linear Dirac equation

$$\mathcal{H}_D \Psi = (\vec{\alpha} \cdot \vec{p} + \beta m) \Psi = i \frac{\partial \Psi}{\partial t} \Longrightarrow (i \gamma^{\mu} \partial_{\mu} - m) \Psi = 0$$

- new degrees of freedom: found to describe spin-1/2 particles
- We introduced the 4-vector current and adjoint spinor:

$$j^{\mu} = \Psi^{\dagger} \gamma^{0} \gamma^{\mu} \Psi = \overline{\Psi} \gamma^{\mu} \Psi$$

- With the Dirac equation we can't escape from having two E > 0 and two E < 0 solutions
- We used the Feynman-Stücklenberg interpretation
 - E > 0 solutions: positive energy **particles** propagating forward in time: $\Psi_i = u_i(E, \vec{p})e^{+i(\vec{p}\cdot\vec{x}-Et)}$
 - E < 0 solutions: positive energy **antiparticles** propagating forward in time: $\Psi_i = v_i(E, \vec{p})e^{-i(\vec{p}\cdot\vec{x}-Et)}$
- 8 solution in total, only 4 independent: we chose to work with the E > 0 solutions $\{u_1, u_2, v_1, v_2\}$
- Orthogonal solutions: $u_i^{\dagger}u_k = 2|E|\delta_{jk}$ with j,k=1,2,3,4

Summary

- The most useful basis: particle and antiparticle helicity eigenstates $\{u_1, u_2, v_1, v_2\}$
- In terms of the 4-component spinors, the charge conjugation, parity and time reversal operations are:

Charge conjugation
$$C: \Psi \to \Psi_C = i\eta_C \gamma^2 \Psi^*$$

Parity reversal
$$P: \Psi \to S(P)\Psi = \eta_P \gamma^0 \Psi$$

Time reversal T:
$$\Psi \to S(T)\Psi = \eta_T \gamma^1 \gamma^3 \Psi$$

Summary of Lecture 7

Main learning outcomes

- Dirac equation
 - 4-vector current and adjoint spinors
 - solutions in terms of particle spinors representing spin-1/2 particles
 - choosing the appropriate basis of spinors
- Spin and helicity operators
- Charge, Parity and Time reversal operators acting on spinors